giulio@gabaldo.com
Il ruolo e l’utilizzo degli antiossidanti in nutrizione e salute animale – Terza parte

Il ruolo e l’utilizzo degli antiossidanti in nutrizione e salute animale – Terza parte

Sistemi di valutazione della capacità antiossidante di un alimento

I sistemi per valutare la capacità potenziale di agire come antiossidante di un dato alimento, ovvero di interferire sul sistema metabolico e immunitario degli animali, sono praticamente due:

  • La capacità antiossidante equivalente TEAC ( in Trolox ) ovvero la capacità antiossidante equivalente di Trolox (TEAC) che misura la capacità antiossidante di una particolare sostanza, rispetto allo standard, Trolox o (6-idrossi-2,5,7,8-tetrametilchroman-2-acido carbossilico). È un analogo solubile in acqua di Vitamina E. La capacità antiossidante equivalente di Trolox (TEAC) è una misurazione della resistenza antiossidante basata su Trolox, misurata in unità chiamata Trolox micromol ITE, ad es. micromol / 100 g ( esame in vitro ). A causa delle difficoltà di misurare le singole componenti antiossidanti di una miscela complessa (es: come gli agrumi, i mirtilli , pomodori, tè verde, etc…), l’equivalenza di Trolox è, oggi, utilizzata come riferimento per la capacità antiossidante di tale miscela. L’equivalenza di Trolox è spesso misurata utilizzando la capacità antiossidante di alimenti ( alimenti ricchi di polifenoli inclusi quelli ad uso zootecnico ) come nella capacità di riduzione del ferro del plasma (FRAP). Tale test è eseguito in vitro e misura esclusivamente la capacità antiossidante potenziale dell’alimento come valore standard, senza verificarne la sua attività a livello metabolico. Questo metodo esprime una scala di valori detta ORAC ( Oxigen Radicals Absorbance Capacity )
  • Test KRL ( by M. Prost , bretto Kirial – Spirial – Brevetto M. PROST/SPIRAL – Octobre 2003)) Test KRL invece fornisce invece una misura dello stato delle difese anti-radicali globali di un soggetto e determina le potenzialità difensive nei confronti dei radicali liberi di vari prodotti ( vitamine, alimenti, spezie, etc…). Il test in pratica simula un attacco ossidativo “ tip” ai globuli rossi in un ambiente controllato e standardizzato.

Esempio di scala ORAC

Quando si confrontano i dati ORAC ( TERAC )occorre prestare attenzione affinché le unità e il cibo che si confronta siano simili. Alcune valutazioni, infatti, dovranno essere valutate per unità ORAC per grammo di peso secco del cibo intero fresco ( es: frutta ) o del frutto secco macinato o congelato. In ogni valutazione, i cibi diversi possono apparire con valori più alti di ORAC, è necessario pertanto rapportarli con gli stessi parametri ( secco, disidratato e/o intero, etc….) ( es: allo stesso modo, il grande contenuto di acqua nell’anguria può far apparire come se questo frutto fosse basso in ORAC. cosa invece non esatta).Allo stesso modo, occorre prendere in considerazione la tipica quantità di alimento utilizzato per erbe e spezie applicando la scala ORAC, ma in quantità molto più basse dal momento che si parla di concentrati di alimenti interi intatti.
Oggigiorno numerose aziende e marketing di prodotti alimentari e di bevande dietetiche e premix per animali, etc… hanno erroneamente capitalizzato il loro rating ORAC promuovendo i prodotti dichiarati “alti in ORAC o TEAC”. Poiché la maggior parte di questi valori ORAC non sono stati convalidati in modo oggettivo da Enti e/o Istituzioni indipendenti o sottoposti a revisioni parziali per la pubblicazione in letteratura scientifica, in molti casi rimangono non confermati e non scientificamente credibili e possono indurre in errore gli utilizzatori. Il Dipartimento dell’Agricoltura degli Stati Uniti (USA) ha ritirato la sua affidabilità nel 2012 come biologicamente non validi, affermando che “ i dati relativi alla capacità antiossidante degli alimenti generati da in vitro (test- tube) non possono essere estrapolati agli effetti in vivo (sia per persone che per animali) e le sperimentazioni cliniche per testare i benefici degli antiossidanti dietetici hanno prodotto non affidabili”.

Test KRL di resistenza ai fattori ossidanti (by Dr. Michel Prost – SPIRAL)

Test KRL fornisce una misura dello stato delle difese anti-radicali globali di un soggetto e determina le potenzialità difensive nei confronti dei radicali liberi di vari prodotti ( vitamine, antiossidanti, alimenti o mangimi, etc…)
Il test in pratica simula un attacco ossidativo “ tipo” ai globuli rossi in un ambiente controllato e standardizzato. In queste condizioni, gli eritrociti non vengono influenzati da altri fattori enzimatici e strutture molecolare per sopportare l’attacco ossidativo fino a quando la membrana cellulare si altera al punto tale da perdere il loro contenuto cellulare. La resistenza degli eritrociti sottoposti a test è pertanto espressa dal tempo impiegato per rilasciare il 50% del contenuto di emoglobina.
L’importanza medico-scientifica di questo test è che esso riflette la capacità globale di difesa di un individuo nei confronti dell’aggressione dei radicali liberi coinvolti in molte malattie e che ci permette di valutare preventivamente la capacità “ potenziale” di difesa dell’individuo in un habitat che tenga conto di tutti i fattori positivi come vitamine, capacità della difesa enzimatica …) e fattori ( stress, cattiva alimentazione, micotossine, ecc).

METODO PER EFFETTUARE IL TEST KRL ( brevetto Prost- Spiral )

Applicazione del test KRL

È stata valutata l’applicazione del kit Radicaux Libres (KRL) per valutare l’attività antiossidante del sangue totale nei suini. Il KRL è stato convalidato anche dall’FDA – USA e EFSA – Europeo ed è oggi considerato il test più affidabile ed ampiamente utilizzato negli esseri umani per valutare l’efficacia dei trattamenti naturali o farmaceutici per valutare le attività antiossidanti naturali( polifenoli e bioflavonoidi) o sintetici ( vitamina E e Vitamina C). Il test viene raccomandato come uno strumento efficace per valutare l’attività antiossidante degli ingredienti alimentari negli alimenti per suini ( by Rossi R, Pastorelli G, Corino C- Res Vet Sci 2013 Apr ).

Il principio del RESEDA (Réserves de Défenses Antiradicalaires – Brevetto M. PROST/SPIRAL – Octobre 2003)

È stato dimostrato che le cellule sottoposte allo stress metabolico dei radicali liberi hanno la capacità di aumentare i loro sistemi di difesa cellulare accumulando un potenziale di difesa contro gli stessi che utilizzano in caso di necessita (stress ossidativo ). Questo potenziale cambia a seconda delle condizioni fisiologiche in cui si trova l’organismo e a seconda della quantità di anti radicali liberi (in pratica antiossidanti) che la cellula è riuscita ad accumulare. Tale principio (RESEDA) in pratica, dimostra la capacità di “auto-difesa cellulare” utilizzando gli antiossidanti accumulati (principio brevettato dal Dr. Michel Prost/ Spiral Ottobre 2003).

FONTI DI RADICALI LIBERI( by M.Prost )

LE DIFESE CELLULARI CONTRO I RADICALI LIBERI( by M.prost )

CINETICA DELL’ EMOLISI ( by M.prost )

Risultati su sangue di soggetti trattati con antiossidanti

TEST ESEGUITO SU DEI SUINI TRATTARI E NON TRATTATI CON ANTIOSSIDANTI ( by M.prost )

Riconoscimento Giuridico a livello Europeo del test KRL

The role and use of antioxidants in nutrition and animal health – Second part

The role and use of antioxidants in nutrition and animal health – Second part

Vitamin E or α-tocopherol

Its activity is mostly focused on the antioxidant action towards to of Carotenes family and Retinol.
The action is attributable to the ability to “break” the chain reactions that produce “free radicals” protagonists of peroxidation.

Since almost all cell membranes are rich in unsaturated fatty acids, the more or less pronounced presence of glutathione-peroxidase (Vitamin E + Selenium) affects the best structural and functional integrity of cell membrane.

The “vitamers” are the tocopherols of which the most active is α-tocopherol. Tocopherols are naturally synthesized from superior vegetables and are mostly found in the form of free alcohols in seeds and leaves.
The metabolic role of Vitamin as an antioxidant factor, in the prevention of oxidation of polyunsaturated fatty acids, a key phenomenon in the development of the fat peroxidation process.

The action of “free radicals” develops through chain reactions that continue the process therefore Vitamin E is:
a) capable of blocking this phenomenon by donating a hydrogen atom (oxidation) to peroxy lipidic radicals, thus making them less reactive and effectively blocking lipid peroxidation.
b) it was shown that tocopherol can interfere with the activity of certain calcium / phospholipid-dependent kinases or protein kinases C (PKCs) interacting directly acting as an anti-proliferative on tumor cells. The action of tocopherol as such or as an organic derivative (succinate) on the growth of malignant cells has been proven for some time.

A group of Italian researchers from the University of Ann Harbor in Michigan has discovered how tocopherol can exert direct effects on gene expression. The studies of this group led to the discovery of a cellular cytoplasm protein able to bind tocopherol (Tocopheryl-Activated Protein-1; TAP-1) and to program the expression of specific genes.
The coordinated action of these genes would allow specific responses at the cardiovascular, immunological, nervous and cartilaginous levels.

The actions and mechanisms by which vitamin E acts in the body were almost completely obscure until a decade ago.
This reaction called “redox” transforms vitamin E into an α-tocoploxylic radical which is very stable, thanks to the development of resonance phenomena, and which can react with Vitamin C or glutathione or Co-enzyme Q10 to reform the α-tocopherol. Since the development of lipid peroxidation can determine profound alterations of cell membranes, we understand why vitamin E is recognized as having an important role in keeping these structures undamaged.

This is also verified by the fact that red blood cells (erythrocytes), which are particularly subjected to oxidative stress, are affected quite early by vitamin E deficiencies, becoming more sensitive to haemolysis. (test by KRL- M.Prost – Spiral). Vitamin E also regulates the activity of two enzymes (lipoxygenesis and cyclooxygenesis) involved in the formation of compounds capable of mediating platelet aggregation phenomena which are accentuated by the lack of the vitamin (prostanoids)

Bioflavonoids and polyphenols and their antioxidant role

They constitute a family of a few thousand (more than 5000) of natural and semi-natural organic molecules widely found in the plant kingdom. It is a very large group of derivatives of the secondary metabolism of plants and is characterized, as the name indicates, by the presence of multiple associated phenolic groups in more or less complex structures generally of high molecular weight such as highly polymerized phenolic acids such as tannins (not soluble) The number and characteristics of these phenolic structures underline the unique physical, chemical, and biological (metabolic, toxic, therapeutic, etc.) properties of particular members of the polyphenol class. The number and characteristics of these phenolic structures underline the unique.

Il ruolo e l’utilizzo degli antiossidanti in nutrizione e salute animale – Seconda parte

Il ruolo e l’utilizzo degli antiossidanti in nutrizione e salute animale – Seconda parte

Vitamina E o α- tocoferolo

La sua attività è per lo più accentrata sull’azione antiossidante nei confronti di Caroteni e Retinolo.
L’ azione è attribuibile alla capacità di ” rompere ” le reazioni a catena che producono ” radicali liberi ” protagonisti della perossidazione.

Dal momento che quasi tutte le membrane delle cellule sono ricche di acidi grassi insaturi, la presenza più o meno accentuata di glutatione-perossidasi ( Vitamina E + Selenio ) si ripercuote sulla migliore integrità strutturale e funzionale delle membrane cellulari.

I ” vitameri ” sono i tocoferoli di cui il più attivi è l’ a- tocoferolo. I tocoferoli vengono sintetizzati naturalmente dai vegetali superiori e si trovano per lo più sotto forma di alcoli liberi nei semi e nelle foglie.
Il Ruolo metabolico della Vitamina quale fattore antiossidante , nella prevenzione dell’ossidazione degli acidi grassi polinsaturi, fenomeno chiave nello sviluppo del processo di perossidazione dei grassi.

L’azione sui “ radicali liberi “ si sviluppa attraverso delle reazioni a catena che continuano il processo pertanto la Vitamina E è:
a) in grado di bloccare questo fenomeno donando un atomo di idrogeno ( ossidazione ) ai radicali perossilipidici, rendendoli in tal modo meno reattivi e bloccando di fatto la perossidazione lipidica.
b) si è evidenziato che il tocoferolo può interferire con l’attività di certe chinasi calcio/fosfolipide-dipendenti o proteina chinasi C (PKCs) interagendo direttamente comportandosi da anti-proliferativo su cellule tumorali. L’azione del tocoferolo come tale o come derivato organico (succinato) sulla crescita delle cellule maligne è provata da tempo.
Un gruppo di ricercatori italiani dell’Università di Ann Harbor nel Michigan ha scoperto come il tocoferolo può esercitare effetti diretti sull’espressione genica. Gli studi di questo gruppo hanno condotto alla scoperta di una proteina del citoplasma cellulare in grado di legare il tocoferolo (la Tocopheryl-Activated Protein-1; TAP-1) e programmare l’espressione di geni specifici.
L’azione coordinata di questi geni permetterebbe risposte specifiche a livello dell’apparato cardiovascolare, immunologico, nervoso e cartilagineo.

Le azioni ed i meccanismi con cui la vitamina E agisce nell’organismo erano quasi del tutto oscuri fino ad un decennio fa.
Tale reazione chiamata “ redox “ trasforma la vitamina E in un radicale α-tocoferossilico che è molto stabile, grazie allo sviluppo di fenomeni di risonanza, e che può reagire con la Vitamina C o con il glutatione o con il Co-enzima Q10 per riformare l’α-tocoferolo. Poiché lo sviluppo della perossidazione lipidica può determinare profonde alterazioni delle membrane cellulari, si capisce il perché alla vitamina E è riconosciuto un ruolo importante nel mantenere tali strutture indenni.

Ciò è verificato anche dal fatto che i globuli rossi ( eritrociti ) che sono particolarmente sottoposti a stress ossidativo, risentono abbastanza presto di stati carenziali di vitamina E divenendo più sensibili all’emolisi. ( test di KRL- M.Prost – Spiral ). La vitamina E, inoltre, regola l’attività di due enzimi ( la lipossigenesi e la ciclossigenesi ) coinvolti nella formazione di composti capaci di mediare i fenomeni d’aggregazione piastrinica i quali vengono accentuati dalla mancanza della vitamina ( prostanoidi).

Bioflavonoidi e Polifenoli ed il loro ruolo antossidante

Costituiscono una famiglia di qualche migliaia di molecole ( più di 5000 ) organiche naturali e seminaturali largamente presenti nel regno vegetale. È un gruppo molto grande di derivati del metabolismo secondario delle piante e sono caratterizzati, come indica il nome, dalla presenza di molteplici gruppi fenolici associati in strutture più o meno complesse generalmente di alto peso molecolare come gli acidi fenolici altamente polimerizzate come i tannini( non solubili ).
Il numero e le caratteristiche di tali strutture fenoliche sottolineano le uniche proprietà fisiche, chimiche, e biologiche ( metaboliche, tossiche, terapeutiche, etc….) di membri particolari della classe di polifenoli.

The role and use of antioxidants in nutrition and animal health – First part

The role and use of antioxidants in nutrition and animal health – First part

What are oxidizing substances or ROS (Reactive Oxygen Species)?

In chemistry it is said that a chemical element undergoes oxidation when it undergoes an electron subtraction, which translates into an increase in its oxidation number. This subtraction of electrons can take place by another element, which thus undergoes the complementary reduction process. Most oxidation reactions involve the development of energy in the form of heat and electricity. Substances that have the ability to oxidize other substances are known as oxidizing agents or ROS.

They subtract electrons from other substances and in practice accept electrons. Oxidizers are generally chemical substances that possess elements with a high number of oxidation, for example hydrogen peroxide, permanganate or highly electronegative substances such as oxygen (eg: air), flower, chlorine (eg: sea salt) or bromine, capable of removing one or more electrons from other substances.

 

 

Oxidation

Simple classic examples: Piece of oxidized metal (corroded) – Corrosion

Oxidation is a chemical reaction that transfers electrons from a substance to an oxidizer.
Oxidation reactions produce free radicals or ROS, which are responsible for initiating a chain reaction that damages cells. Antioxidants terminate these chain reactions by intervening on intermediate radicals and inhibiting other oxidation reactions by oxidizing themselves.

Oxidative stress

Oxidative stress is a pathological condition caused by the breakdown of physiological equilibrium, in a living organism (vegetable, animal or human), between the production and elimination, by antioxidant defense systems from oxidizing substances.
All life forms maintain an “antioxidant reducing environment” (antioxidant stock) within their cells. In the REDOX cellular environment (with the term redox or redox from the English REDduction, reduction and OXidation, oxidation) all those chemical reactions take place in which the oxidation number of the atoms changes (ie all the reactions in which there is an exchange of electrons from one chemical structure to another) it is preserved by enzymes that maintain the reduced state through a constant input of metabolic energy.
Possible alterations of the normal REDOX state can have toxic effects for the production of peroxides and free radicals that damage all the components of the cell, including proteins, fats and DNA intervening negatively in the systems of self-defense (immunodepression) and in the health of the organis.

 

Cellular oxidative stress

Oxidative stress, on the part of free radicals and how, these oxidative processes, can cause significant oxidation at the level of the cell membrane and destroy DNA. Today it is possible to evaluate them by means of tests that help us assess the state of health of the organism , the inflammatory state and the onset of some diseases (eg: in humans pathologies such as diabetes, Alzheimer’s and cardiovascular diseases, but also in animals as in pigs with the onset of “very aggressive viral and bacterial forms that are not very sensitive to normal drugs, such as PRRS, etc … or even, not less important, lack of productive and qualitative performances).
Today it is possible to measure both the production of free radicals and the body’s ability to react to oxidative stress through the antioxidant barrier that includes both endogenous antioxidants (complex enzyme systems) and exogenous ones (ie those that are taken through nutrition), and also antioxidant power of a particular functional food (KRL test on red blood cells).

 

Classic example “on the apple” of damage from free radicals at the cellular level

 

 

 

Definition of antioxidants

Antioxidants are natural and non-natural chemical substances (molecules, ions, radicals) or physical agents that slow down or prevent the oxidation of other substances as a result. The antioxidants are chemically defined of involve as reducing agents (such as thiols and polyphenols) as the chemicals involved in to reactions in thr oxide-reducing. Although oxidation reactions are vital for life, they can be just as harmful; therefore, both plants and animals maintain multiple types of antioxidants as complex self-defense systems.

 

Antioxidants can be ….

  • Primary:
    1) When they prevent the production of “species” of radicals
    2) When “grappling ” on the transition metals
  • Secondary: when they react with the newly formed radicals and convert them into non-reactive forms by interrupting the chain reaction and therefore can be:
  1. Endogenus: quando sono sintetizzati dall’organismo stesso( enzimatici cellulari) ed a seconda della loro azione posso essere
    a) 1) Enzyme type cellular, as:
    – SOD (superoxide dismutase), catalase and glutathio-peroxidase (it is the main cellular antioxidant that maintains low O2 level and works in conjunction with Catalase and Glutathione Peroxidase (GSH-Px —-> Vit E + Se) it is the main “detoxifier” of the cells:

     


    – 2. The Catalase (CAT): 2 H2 O2 ——> 2 H2O + O2
    b) Type Protein as SH and metallic sequestering agents (Fe, Cu,)

  2. Exsogenus:
    – Vitaminics: Vitamin C and Vitamin E and Carotenoids (as provitamin A)
    – Polyphenols and Bio-flavonoids

 

How do antioxidants work?

The oxidation process is a chemical reaction that transfers electrons from a substance to an oxidizer

Il ruolo e l’utilizzo degli antiossidanti in nutrizione e salute animale – Prima parte

Il ruolo e l’utilizzo degli antiossidanti in nutrizione e salute animale – Prima parte

Cosa sono le sostanze ossidanti o ROS ( Reactive Oxigen Species )?

In chimica si dice che un elemento chimico subisce ossidazione quando subisce una sottrazione di elettroni, che si traduce nell’aumento del suo numero di ossidazione. Questa sottrazione di elettroni può avvenire a opera di un altro elemento, che subisce così il complementare processo di riduzione. La maggior parte delle reazioni di ossidazione comportano lo svilupparsi di energia sotto forma di calore ed elettricità. Le sostanze che hanno la capacità di ossidare altre sostanze sono note con il nome di agenti ossidanti o ROS.

Essi sottraggono elettroni alle altre sostanze e poiché in pratica accettano elettroni. Gli ossidanti sono generalmente sostanze chimiche che possiedono elementi ad alto numero di ossidazione, per esempio il perossido di idrogeno, il permanganato o sostanze altamente elettronegative quali l’ossigeno ( es:aria ), il floro, il cloro ( es: sale marino ) o il bromo, capaci di sottrarre uno o più elettroni ad altre sostanze.

 

Ossidazione

Semplici esempi classici: Pezzo di metallo ossidato (corroso) – Corrosione

L’ossidazione è una reazione chimica che trasferisce elettroni da una sostanza ad un ossidante .
Le reazioni di ossidazione producono radicali liberi, responsabili dell’avvio di una reazione a catena che danneggia le cellule. gli antiossidanti terminano queste reazioni a catena intervenendo sui radicali intermedi ed inibendo altre reazioni di ossidazione facendo ossidare se stessi.

Stress ossidativo

Lo stress ossidativo è una condizione patologica causata dalla rottura dell’equilibrio fisiologico, in un organismo vivente ( vegetale, animale o uomo ), fra la produzione e l’eliminazione, da parte dei sistemi di difesa antiossidanti da sostanze ossidanti.
Tutte le forme di vita mantengono un “ ambiente riducente antiossidante “ ( stock antiossidante ) entro le proprie cellule. Nell’ambiente cellulare REDOX ( con il termine ossidoriduzione o redox dall’inglese REDduction, riduzione e OXidation, ossidazione) avvengono tutte quelle reazioni chimiche in cui cambia il numero di ossidazione degli atomi ( cioè tutte le reazioni in cui si ha uno scambio di elettroni da una struttura chimica ad un’altra ) è preservato da enzimi che mantengono lo stato ridotto attraverso un costante input di energia metabolica.
Eventuali alterazioni del normale stato REDOX possono avere effetti tossici per la produzione di perossidi e radicali liberi che danneggiano tutti i componenti della cellula, incluse proteine, grassi e DNA intervenendo negativamente nei sistemi di autodifesa ( immunodepressione ) e nella salute dell’organismo.

 

Stress ossidativo cellulare

Lo stress ossidativo, da parte dei radicali liberi e di come, questi processi ossidativi,  possono provocare ossidazioni importanti a livello della membrana cellulare e distruggere il DNA oggi è possibile valutarli per mezzo di esami che ci aiutano a valutare lo stato di salute dell’organismo, lo stato infiammatorio e l’insorgenza di alcune malattie ( es: nell’uomo patologie come il diabete, Alzheimer e malattie cardiovascolari , ma anche negli animali come nei suini con l’instaurarsi di “ forme virali e batteriche molto aggressive e poco sensibili ai normali farmaci, come la PRRS, etc… o anche, non meno importanti, mancate performance produttive e qualitative ).
Oggi è possibile misurare sia la produzione dei radicali liberi che la capacità dell’organismo di reagire allo stress ossidativo tramite la barriera antiossidante che comprende sia gli antiossidanti endogeni (sistemi enzimatici complessi) che quelli esogeni (ovvero quelli che si assumono tramite la nutrizione), ed anche potere antiossidante di un particolare alimento funzionale ( test KRL sui globuli rossi ).

 

Classico esempio “sulla mela” del danno da parte dei radicali liberi a livello cellulare

 

 

 

Definizione degli antiossidanti

Gli antiossidanti sono sostanze chimiche ( molecole, ioni , radicali) o agenti fisici che rallentano o prevengono l‘ossidazione di altre sostanze come risultato, gli antiossidanti sono definiti chimicamente agenti riducenti ( tipo tioli e polifenoli ) in quanto le reazioni chimiche coinvolte sono di ossido-riduzione. Anche se le reazioni di ossidazione sono fondamentali per la vita, possono essere altrettanto dannose; perciò, tanto le piante, quanto gli animali mantengono, come complessi sistemi di autodifesa, molteplici tipi di antiossidanti.

 

Gli antiossidanti possono essere….

  • Primari:
    1) Quando prevengono la produzione di “ specie “ di radicali
    2) Quando sequestrano i metalli di transizione
  • Secondari: quando reagiscono con il radicali neo-formati e li convertono in forme non o poco reattive interrompendo la reazione a catena e quindi possono essere:
  1. Endogeni: quando sono sintetizzati dall’organismo stesso( enzimatici cellulari) ed a seconda della loro azione posso essere
    a) Di tipo Enzimatico cellulare, come:
    – il SOD( Superossido dismutasi ) , catalasi e glutatio-perossidasi ( è il principale antiossidante cellulare che mantiene basso il livello di O2 e funziona congiuntamene con la Catalasi e la Glutatione Perossidasi( GSH-Px —-> Vit E + Se ) è il principale “detossificatore” delle cellule:

     


    – 2. la Catalasi (CAT): 2 H2 O2 ——> 2 H2O + O2
    b) Di tipo proteico come SH e sequestranti metallici ( Fe, Cu,)

  2. Esogeni:
    – Vitaminici: Vitamina C e Vitamina E e Carotenoidi ( come provitamina A )
    – Polifenoli e Bioflavonoidi

 

Come agiscono gli antiossidanti ?

Il processo di ossidazione è una reazione chimica che trasferisce elettroni da una sostanza ad un ossidante